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Axially chiral biaryls are well recognized as a characteristic SnCl, were employed for the reaction of AACMa and silyl
chemical class in organic synthesis due to their utility as efficient triflates for diastereometa to obtain the chiral biaryl produ@a.
chiral ligands and key intermediates of biologically active com-
poundst Various synthetic methods have been exploited to produce
chiral biaryls? Chirality transfer protocols from stereogenic axes
to the s centers have also attracted much attention for studies of
asymmetric reactions.In addition, opposite methodologies for
chirality transfer from a stereogenic3spenter to axial chirality
have moved into the spotlight."45 This transformation requires

more than two steps to obtain atropenantiomers: the initial chirality  Tapje 1 Jists the results of the chirality exchange. The benzan-
transfer to construct chiral atropdiastereomers, followed by removal yjation of AACM 1a using TiCk at 0 °C gave the chiral

of the sp central chirality to produce atropenantiomers. Recently, naphthalen@a (55% yield, 97% ee) along with 20% of the achiral
Shair and co-workers achieved an elegant biomimetic synthesis Ofcx-phenylnaphthalenéa (entry 1). The reaction at-78 °C suc-
(—)-longithorone A using a chirality transfer as the key step. cessfully proceeded in excellent yield (96%) and with both excellent
Here we disclose a novel efficieehirality exchangesingle- regio- (>99:1) and enantioselectivities>09% ee) (entry 2).
step chirality transformation from 3pentral to axial; benzannu-  Eycellent selectivities were also achieved by the use of Se@try
lation of optically active aryl(ary)-2,2-dichlorocyclopropylmeth- 3). In the case of AACMLd, the use of TiC] resulted in a switch
anols (AACMs)1 afforded chiral biaryl with excellent level of of the regioselectivity to give achiral naphthalee exclusively
stereo induction (eq 1). (entry 4). This finding is consistent with the reported benzannulétion.
In contrast to the reaction & with TiCl,, the use of silyl triflates
OO gave mainly2a, and the yield and enantiomeric excess were
HCl g moderate (entries-57). Absolute configurations dfaand2awere
unambiguously determined by X-ray crystallographic anafysis.
>99%ee The excellent result using Ti¢kencouraged us to investigate
the chirality exchange of other AACMEb—1f (Table 2). Similar
to 1a, Cl (RY) analogue AACMLb also exhibited an excellent result
As part of the program of synthetic studies on the transformation (€ntry 1). A notable aspect of the present method lies in its
of gemdihalocyclopropropanéswe reported the Lewis acid- generality; when RsubstltuenFs were introduced into AACMs
promoted regiocontrolled benzannulation of some racemic AACMs 1¢—1f, an excellent level of chirality exchange $9% ee’s) was

1a_TiCl, pre-(M)-2a 1a’_R;SiOTf

1 pre-(M)-2 2

1 lacking ortho substituents tRr R?) to afford achirake-arylnaph- achieved in every case examined to give the desifdjtof
thalenegd The choice of Lewis acids determined the cyclization Naphthalene&c—2f (entries 2-5). The absolute configurations of
regioselectivity of the benzannulation: TiCind SnCJ utilized naphthalene@b—2f were determined by analogy wite.

the chelation pathway, while sily! triflates utilized a nonchelation _ The proposed mechanism of the chirality transfer mediated by
one eventually to give regioisomerig-arylnaphthalenes. The  TiClsis as follows (Scheme 1). First, TiXthelates with the oxygen
present plan is based on the hypothesis that the incorporation ofand chlorine of AACMs to give a rigid intermediaté\. Due to

an ortho substituent (Rand/or R) into chiral AACMs 1 would steric repulsion, the ortho substituent(Porients itself at the
rationally control the orientation of the benzannulation by fixing Packside of the chelation face. Successive Fitbmoted elimina-
the conformation around bondsandb of the cationic intermediate  tion of the OH group gives the cationic intermediate fv-g while
pre-(M)-2. Thus, (M)-a-arylnaphthaleneg would be produced by ~ Sufficiently maintaining the conformation by freezing the free
the chirality exchange (a type of memory effect rotation of bondsa andb. The conjugation between the cyclopro-

A couple of chiral diastereomeric AACM substratéaand1d, pylmethyl cation ano! benzene ring_system should contribute to
were conveniently prepared to verify our hypothesis (eq 2) (Sup- Preventthe fgree rotation of borimbearing an accessory-Rhenyl
porting Information describes the preparation and characterization N Pre-M)-2.° Then, highly regioselective ring-opening of boad
of 1a and 1d). Both (S)- and R)-cyclopropanecarboxylic acids, and FriedetCrafts-type cycll_zatlon sequentially occur tp give
the precursors of chiral AACMS, were obtained:; in this context ~ -arylnaphthalenel()-2 exclusively. In contrast, because silyl tri-

we used the$)-form. On the basis of previous studfsTiCl, and flates cannot coordinate with Cl, nonchelation intermed&tis
presumably produced. Thus, borasndb rotate to some extent
TKwansei Gakuin University. to generate preR)-2 in the cation-formation step.
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Table 1.

Chirality Exchange Benzannulation of AACM 1a and 1a’

| |
Lewis acid M OO OO
—— & Me
CHoCly e ”'” * Me
2a 3a

la 1a’
yield ratio? ee of 2a
entry  substrate? Lewis acid® T(°C) (%)° (2a:3a) (%)°
1 la TiClg4 0 75 (74:26) 97
2 la TiClg —78 96 >99:1) >99
3 la SnCl —78 72 >99:1) >99
4 1d TiCla —78 89 >1:99) -
5 1d TBDMSOTf 0 41 (97:3) 45
6 1d TMSOTf 0 54 (77:23) 55
7 1d TBDMSOTf —78 trace — -

aQOptical purities: >99% eeP 1.0 equiv of Lewis acid was used.
¢ Isolated yieldsd Determined by'H NMR. € Determined by HPLC with a
Chiralcel OD column.

Table 2. Chirality Exchange Benzannulation of AACMs 1b—f
Using TiCl, @

© Y c O
Mé

on TiCly
R O R? CH,Cly, -78°C
1b-f 2b-f
entry substrate® R! R? product yield (%)° ee (%)°
1 1b Cl H 2b 97 >99
2 1c Cl Cl 2c 70 >99
3 1d MeO Me 2d 71 >99
4 le MeO Cl 2e 65 >99
5 1f Me Cl 2f 47 >99

a1.0 equiv of TiCh was used® Optical purity of each AACM was 99%
ee.¢ Isolated yieldsd Determined by HPLC with a Chiralcel OD column.

RgSIOTH

la—>

pre-(P)-2a

In summary, we achieved the first chirality exchange benzan-

nulation from sg central chirality to axial chirality using optically
active o-Rl-substituted AACMs1 and obtained axially chiral
a-arylnaphthalene with excellent enantioselectivity. The present
method is a new avenue for the synthesis of axially chiral biaryls.
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